2-61) a) fold the paper no smeared ink to show all T-creases.
 b) named my units T-creases, what's yours?
 c) answers vary become each term has different unit measure.
 d) measured to perimeter.

2-62 a) Square T-creases, your's will be Square inches
 b) Answers vary, check with your team mates.

2-63) a) \(3 \times 5 = 15 \) square T-creases.
 b) multiplied, you could have counted.
 c) They all have 15 squares and have the same shape. However, their size is different.

2-64 a) probably: miles or kilometers, when you live really close, run might seem yards.
 b) square yards or meters
 c) millimeters
 d) inches or centimeters
 e) probably cubic feet

2-65) They are all acute angles.

2-66) Your reasons will vary:
 a) \(\angle 3 = 32^\circ \) since it is supplementary to \(118^\circ \)
 b) \(\angle 5 = 32^\circ \) since it is alternate interior to \(\angle 3 = 32^\circ \)
 c) \(\angle a = 118^\circ \) since it is supplementary to \(62^\circ \), which was congruent.
 d) \(\angle b = 118^\circ \) since it is vertical to \(\angle a = 118^\circ \) to another \(62^\circ \).

2-67 a) \(m \angle 4 = 180^\circ - (48^\circ + 117^\circ) = 15^\circ \)
 b) \(4x + 12^\circ + \frac{7x - 8^\circ}{1} + 4x + 6^\circ = 180^\circ \)

\[
\frac{15x}{15} = \frac{180^\circ}{15} \\
x = 12^\circ
\]

So, \(\angle 4 \) is \(4(12) + 2 = 50^\circ \)

2) Equilateral: since all \(\angle s \) & sides would be \(60^\circ \).

Page 1 of 2
2. (a) $b = 3$

$m = -2/3$ so $y = -\frac{2}{3}x + 3$

(b) yes, because no slope or opposite reciprocals

-2/3 equivalent to $3/2$

(c) $rac{3}{6} = \frac{1}{2}$

$y = \frac{1}{2}x + 5$

(d) $y = -2x + 5$ where x is any real value.