Algebra IB: Recursive, Arithmetic and Geometric Review

Find the first 5 terms of each sequence given the recursive formula.

1. \(f(n + 1) = 4f(n) + 3 \) and \(f(1) = 5 \)

2. If the recursive formula is \(f(n + 1) = f(n) - 7 \) and \(f(1) = 6 \) find the 3rd term.

3. Write the recursive formula for the sequence: \(-5, -2, 1, 4, \ldots\)

Sequence	Next three terms?	Arithmetic or Geometric?	State the explicit formula
4. \(10, -100, 1000, \ldots \) | | |
5. \(1, 9, 17, 25, \ldots \) | | |
6. \(2, 10, 50, 250, \ldots \) | | |

Write the next 4 terms of each arithmetic sequence.

7. \(f(1) = 6, d = -8 \) | | |
8. \(f(1) = 7, d = -5 \) | | |
9. The first term of an arithmetic sequence is 8, and the common difference is -7.
 a) Write the explicit formula for the nth term.

 b) What is $f(4)$?

 c) What is $f(20)$?

10. Write the explicit formula for the nth term of each geometric sequence and then use the formula to find $f(9)$.

 a) $4, 12, 36, 108, ...$

 b) $72, 18, \frac{9}{2}, \frac{9}{8}, ...$

11. Write the geometric explicit formula when $f(1) = -4$ and whose common ratio is 3 and find $f(4)$ of the geometric sequence.

12. Given the explicit formula $f(n) = 8n - 1$, write the recursive formula.