1. For \(A(-1, 2, 3) \), \(B(2, 0, -1) \) and \(C(-3, 2, -4) \) find:
 a. the equation of the plane defined by \(A \), \(B \) and \(C \)
 b. the measure of angle \(CAB \)
 c. \(r \), given that \(D(r, 1, -r) \) is a point such that angle \(BDC \) is a right angle.

2. a. Find where the line through \(L(1, 0, 1) \) and \(M(-1, 2, -1) \) meets the plane with equation \(x - 2y - 3z = 14 \).
 b. Find the shortest distance from \(L \) to the plane.

3. Given \(A(-1, 2, 3) \), \(B(1, 0, -1) \) and \(C(1, 3, 0) \), find:
 a. the normal vector to the plane containing \(A \), \(B \) and \(C \)
 b. \(D \), the fourth vertex of parallelogram \(ACBD \)
 c. the coordinates of the foot of the perpendicular from \(C \) to the line \(AB \).

4. Show that the line \(x - 1 = \frac{y + 2}{2} = \frac{z - 3}{4} \) is parallel to the plane \(6x + 7y - 5z = 8 \) and find the distance between them.

5. Consider the lines with equations \(\frac{x - 3}{2} = \frac{y - 4}{-2} = \frac{z + 1}{-2} \) and \(x = -1 + 3t \).
 a. Are the lines parallel, intersecting or skew? Justify each answer.
 b. Determine the cosine of the acute angle between the lines.

6. For \(A(2, -1, 3) \) and \(B(0, 1, -1) \), find:
 a. the vector equation of the line through \(A \) and \(B \), and hence
 b. the coordinates of \(C \) on \(AB \) which is 2 units from \(A \).

7. Find the equation of the plane through \(A(-1, 2, 3) \), \(B(1, 0, -1) \) and \(C(0, -1, 5) \). If \(X \) is \((3, 2, 4) \), find the angle that \(AX \) makes with this plane.

8. a. Find all vectors of length 3 units which are normal to the plane \(x - y + z = 6 \).
 b. Find a unit vector parallel to \(\mathbf{i} + \mathbf{r} \mathbf{j} + 3\mathbf{k} \) and perpendicular to \(2\mathbf{i} - \mathbf{j} + 2\mathbf{k} \).
 c. The distance from \(A(-1, 2, 3) \) to the plane with equation \(2x - y + 2z = k \) is 3 units. Find \(k \).

9. Use vector methods to determine the measure of angle \(QDM \) given that \(M \) is the midpoint of \(PS \) of the rectangular prism.

10. \(P(-1, 2, 3) \) and \(Q(4, 0, -1) \) are two points in space. Find:
 a. \(\overline{PQ} \) b. the angle that \(\overline{PQ} \) makes with the \(X \)-axis.
REVIEW SET 17C

1a $14x + 29y - 4z = 32$
 b 55.86^o
 c $r = \frac{2 \pm \sqrt{10}}{2}$

2a They do not meet, the line is parallel to the plane.
 b $\frac{16}{\sqrt{14}}$ units

3a $\mathbf{n} = [5, -1, 3]$
 b D$(-1, -1, 2)$
 c $(\frac{1}{2}, \frac{5}{2}, \frac{3}{2})$
4 $\frac{31}{\sqrt{170}}$ units

5a intersecting
 b $\frac{10}{3\sqrt{15}}$ units

6a $[x, y, z] = [2, -1, 3] + t[-2, 2, -4]$, $t \in \mathbb{R}$
 b $\left(2 - \frac{2}{\sqrt{3}}, -1 + \frac{2}{\sqrt{3}}, 3 - \frac{4}{\sqrt{3}}\right)$ and
 $\left(2 + \frac{3}{\sqrt{3}}, -1 - \frac{2}{\sqrt{3}}, 3 + \frac{4}{\sqrt{3}}\right)$

7 $4x + 2y + z = 3$, $\approx 64.12^o$

8a $[\sqrt{3}, -\sqrt{3}, \sqrt{3}]$ and $[-\sqrt{3}, \sqrt{3}, -\sqrt{3}]$
 b $\frac{1}{\sqrt{2}}i + \frac{6}{\sqrt{2}}j + \frac{1}{\sqrt{2}}k$ or $-\frac{1}{\sqrt{2}}i - \frac{6}{\sqrt{2}}j - \frac{1}{\sqrt{2}}k$
 c $k = -7$ or 11

9 $\approx 26.4^o$

10a $\overrightarrow{PQ} = [5, -2, -4]$
 b $\approx 41.8^o$