11.5 The Vector Equation of a Line in Cartesian 2-Space

Consider the line \(\ell \) which passes through the point A with position vector \(a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \) and which is parallel to the vector \(v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \). Let \(r = \begin{pmatrix} x \\ y \end{pmatrix} \) be the position vector of a general point P on \(\ell \).

Since AP is parallel to v, \(\overrightarrow{AP} = tv \) where \(t \) is a scalar.

Thus \(\overrightarrow{OP} - \overrightarrow{OA} = tv \) or \(r = a + tv \).

The equation \(r = a + tv \) or \(\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \) is the vector equation of the line \(\ell \).

The conversion of the vector equation to the normal Cartesian equation is illustrated in the following example.

Example Write the vector equation \(\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \end{pmatrix} \) in the form \(ax + by = c \).

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 2+3t \\ -1-2t \end{pmatrix}
\]

which gives \(x = 2 + 3t \) and \(y = -1 - 2t \).

Making \(t \) the subject of each equation gives \(t = \frac{x-2}{3} \) and \(t = \frac{y+1}{-2} \). Hence

\[
\frac{x-2}{3} = \frac{y+1}{-2}
\]

and so \(-2x + 4 = 3y + 3\) or \(2x + 3y = 1\).
Motion of a Body Moving in a Straight Line in Cartesian 2-Space

In the following work, the vector components each represent a displacement of 1 unit of distance either in the direction of the x-axis or in the direction of the y-axis.

A body moves in a straight line in the direction of the vector $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$. If the body starts from point A with position vector \mathbf{a} at time $t = 0$, the position vector of the body at any subsequent time t is given by $\mathbf{r} = \mathbf{a} + t\mathbf{v}$.

The vector \mathbf{v} is called the velocity vector of the body and the length of this vector, $|\mathbf{v}|$, denotes the (constant) speed of the body.

Example

A body initially at the point $(2, 1)$ has a velocity vector $3\mathbf{i} - 4\mathbf{j}$. If the distance unit is a metre and the time unit is a second, find:

(a) the position vector of the body after 8 seconds;
(b) the speed of the body.

The position vector of the body after t seconds is given by $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + t(3\mathbf{i} - 4\mathbf{j})$.

(a) When $t = 8$, $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 8(3\mathbf{i} - 4\mathbf{j}) = 26\mathbf{i} - 31\mathbf{j}$.
(b) The speed of the body is $|3\mathbf{i} - 4\mathbf{j}| = 5 \text{ m s}^{-1}$.

Example

If a body moving in the direction of the vector $7\mathbf{i} + 24\mathbf{j}$ where the component unit is a kilometre and the speed of the body is 200 m s^{-1}, find the body's velocity vector.

Let $\mathbf{v} = k(7\mathbf{i} + 24\mathbf{j})$. Then $|\mathbf{v}| = k\sqrt{7^2 + 24^2} = 25k$. But $|\mathbf{v}| = 200$, so $k = 8$.

Therefore the velocity vector is $\mathbf{v} = 8(7\mathbf{i} + 24\mathbf{j}) = 56\mathbf{i} + 192\mathbf{j}$.
1. Find a vector equation for the straight line passing through the point \(A \) and parallel to the vector \(v \) in the following: \(A = (2, -5) \) and \(v = -7i + 3j \)

2. Find the vector equation for the line joining the following pairs of points: \((4, -2)\) and \((9, 8)\)

3. Find a Cartesian equation in the form \(Ax + By = C \) for question #1

4. Find a vector which is parallel to the following line: \(3x - 4y = 5 \)

5. Find a Cartesian equation for a line which passes through the point \(A \) and which is perpendicular to the vector \(v \), in the following: \(A = (2, 3) \) and \(v = 3i + j \)

6. Find a Cartesian equation for a line which passes through the point \(A \) and which is parallel to the vector \(v \), in the following: \(A = (-1, 2) \) and \(v = 2i + 3j \)

7. At time \(t \) seconds, the position vector \(r \) of a moving particle is given by:

\[
\begin{pmatrix}
3 \\
-1
\end{pmatrix} + t \begin{pmatrix}
-5 \\
12
\end{pmatrix}
\]

(Displacement unit = 1 metre).

A. What is the initial position vector of the particle?

B. Find the (constant) speed of the particle.

C. Show that the particle passes through the point with position vector \(-49.5i + 125j\). At what time is this?
ANSWERS:

<table>
<thead>
<tr>
<th></th>
<th>1. (\vec{r} = (2\vec{i} - 5\vec{j}) + t(-7\vec{i} + 3\vec{j})) or (\vec{r} = (2, -5) + t(-7, 3))</th>
<th>2. (\vec{r} = (4\vec{i} - 2\vec{j}) + t(5\vec{i} + 10\vec{j})) or (\vec{r} = (4, -2) + t(5, 10))</th>
<th>3. (3x + 7y = -29)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4. (\vec{v} = \begin{pmatrix} 4 \ 3 \end{pmatrix}) or (\vec{v} = 4\vec{i} + 3\vec{j})</td>
<td>5. (3x + y = 9)</td>
<td>6. (3x - 2y = -7)</td>
</tr>
<tr>
<td>7A.</td>
<td>(\vec{v} = 3\vec{i} - \vec{j})</td>
<td>7B. (13 \frac{\text{meters}}{\text{second}})</td>
<td>7C. (t = 10.5 \text{ seconds})</td>
</tr>
</tbody>
</table>