Contest # 4 Answers & Solutions 1/8/13

Problem 4-1

When a line crosses the y-axis, its x-coordinate is 0, so \(a + 2013 = 0 \) and \(a = -2013 \).

Problem 4-2

Method I: Since the length of a diagonal of the \(12 \times 16 \) rectangle is 20, the length of a diagonal of the smaller rectangle is \(20 - (5 + 5) = 10 \). By similar triangles, the smaller rectangle's sides are half as long as the larger rectangle's sides. Therefore, the area of the smaller rectangle is \(\frac{12}{2} \times \frac{16}{2} = 6 \times 8 = 48 \).

Method II: Since the smaller rectangle's diagonals are half as long as those in the larger rectangle, and since these two rectangles are also similar, the area \(A \) of the smaller rectangle is \(\left(\frac{1}{2} \right)^2 = \frac{1}{4} \) times the area of the larger rectangle, so \(A = \frac{1}{4} \times 16 \times 12 = 48 \).

Problem 4-3

Two days ago, \(x \) dogs skated. The number of dogs skating yesterday was 20% more than that, so it was \(\frac{6}{5} \). Today, we had 40% more dogs skating than yesterday. The number of dogs skating today (which must be an integer) is \(\frac{7}{5} \) of \(\frac{6}{5} \), or \(\frac{42x}{25} \). This will be an integer whenever \(x \) is a multiple of 25. The least positive integral value of \(x \) is 25.

Problem 4-4

This question really asks how many integers < 100 are rational powers of 8. Recall that \(2 = 8^{1/3} \), and no other prime is a rational power of \(8^a \). If we raise 8 to any non-negative multiple of 1/3, the result will be an integer. Since \(x = 8^{k/3} \) is a positive integer < 100 if and only if \(k = 0, 1, 2, 3, 4, 5, \) and 6, there is a total of 7 values.

[NOTE: Here's a proof: Since \(x \) is a positive integer, it follows that \(\log_{8} x > 0 \). If \(\log_{8} x = \frac{u}{v} \) where \(u \) and \(v \) are integers with \(u \geq 0 \) and \(v > 0 \), then \(8^{u/v} = x \), or equivalently \(2^{3u} = x^v \). By prime factorization, \(x = 2^k \), where \(k \) is an integer. If \(x = 2^k \), then \(\log_{8} x = \frac{k}{3} \), where \(k/3 \) is a rational number. Since \(0 < x < 100 \), the only solutions are \(k = 0, 1, 2, 3, 4, 5, \) and 6.]

Problem 4-5

Draw the isosceles trapezoid and its circumcircle, as shown to the right. Draw a perpendicular from the center of the circle to both bases of the trapezoid. This bisects both of those bases, since a line through the center of a circle and perpendicular to a chord bisects the chord. Draw the radii shown in the diagram. Using the Pythagorean Theorem in both right triangles that have the radii as hypotenuses, we get \(x^2 + 9^2 = r^2 = (x+4)^2 + 5^2 \). Solving, \(x = 5 \). The area of the circle is \(\pi r^2 = \frac{106}{\pi} \).

Problem 4-6

Since \(P(1) = P(2) = P(3) = P(4) = P(5) = 0 \), we have \(P(x) = k(x-1)(x-2)(x-3)(x-4)(x-5) \), where \(k \neq 0 \) is a real number. If we expand \(P(x) \), the lead term will be \(kx^5 \). Since \(kx^5 = x^5 \), we know that \(k = 1 \). Now evaluate \(P(-1) \): \(P(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e \), so \(P(-1) = (-1)^5 + a(-1)^4 + b(-1)^3 + c(-1)^2 + d(-1) + e = -1(-a+b+c+d+e) \). From line 2 above, \(P(-1) = (-2)(-3)(-4)(-5)(-6) = -720 \), so \(-a+b+c+d+e = 720 \).

Contests written and compiled by Steven R. Conrad & Daniel Flegler ©2013 by Mathematics Leagues Inc.