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Calculus 2: Summer Assignment 

The Fundamental Theorem of Calculus 

If a function 𝑓 is continuous on the closed interval [a,b], and 𝐹 is an antiderivative of 𝑓 on the interval [a,b], 

then ( ) ( ) ( ).
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U-Substitution 

Consider the example:  

 

 

 

 

 

Examples: (indefitite integrals) 
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1.  Set one part of f(x) equal to u 

2.  Take the derivative of both 

sides of u.   

3.  Substitute u and du  into the 

integral so the integral is only in 

terms of u and simplify the 

integrand. 

4.  Find the antiderivative  

5.  Substitute back to x. 

 



7.  ∫ 8(𝑦4 + 4𝑦2 + 1)2(𝑦3 + 2𝑦)𝑑𝑦 8.  ∫ sin 3𝑥 𝑑𝑥 

 

 

 

 

 

9.  ∫ 𝑥 cos(2𝑥2)𝑑𝑥 10.  ∫ sec 2𝑥 tan 2𝑥 𝑑𝑥 
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Examples: (definite integrals) 
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Integrals of Trigonometric Functions 

1. ∫
csc2x

cot x
 𝑑𝑥     2.  ∫(sec(2𝑥) + tan(2𝑥)) 𝑑𝑥 
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Area Between Two Curves 

Case 1:   𝐴 = ∫ 𝑓(𝑥) − 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 

 

 

Example 1: Determine the area of the region enclosed by 𝑦 = 𝑥2 and 𝑦 = √𝑥 

 

 

 

 

 

Example 2: Determine the area of the region bounded by 𝑦 = 𝑥𝑒−𝑥2
, 𝑦 = 𝑥 + 1, 𝑥 = 2  and the y-axis. 

 

 

 

 

 

 

 

 



Case 2:   𝐴 = ∫ 𝑓(𝑦) − 𝑔(𝑦)𝑑𝑦
𝑑

𝑐
 

 

 

Example 3: Determine the area of the region enclosed by 𝑥 =
1

2
𝑦2 − 3 and 𝑦 = 𝑥 − 1. 

 

 

 

 

 

 

Example 4: Determine the area of the region bounded by 𝑥 = −𝑦2 + 10 and 𝑥 = (𝑦 − 2)2. 

 

 

 

 

 

 

 



Curves that Intersect at More than two Points 

Example 5:  Find the area of the region between the graphs of 𝑦 = 3𝑥3 − 𝑥2 − 10𝑥 and 𝑦 = −𝑥2 + 2𝑥. 

 

 

 

 

 

 

 

 

 

 

Example 6:  Find the area of the region between the graphs of 𝑦 = 2𝑥2 + 10, 𝑦 = 4𝑥 + 16, 𝑥 = −2 and       

                         𝑥 = 5. 

 

 

 

 

 

 

 

 

 

 



Disk Method 

1. The region between the graph of  𝑦 = 𝑥5/3, x = 1 and x = 8 is revolved about the x-axis to generate a 

solid.  Find the volume of the solid. 

 

 

 

 

 

 

 

 

 

2. Find the volume of the region enclosed by the triangle with vertices (0,1), (0,0) and (1,0) if the region is 

revolved around the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

3. Find the volume of the solid generated by revolving the region bounded by the x-axis, the curve y = 3x4, 

and the lines x = -1 and x = 1 about the x-axis. 
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For the following problems find the volume of the solid generated by revolving the region bounded by the lines and 

curves about the x-axis.  You may use your calculator to graph the functions only.  

1.  y = x2, x = 0, x = 2 

 

 

 

 

 

2.  y = x – x2, bounded below by y = 0 

 

 

 

 

 

3.  29y x  , bounded below by y = 0 

 

 

 

 

 

 

 

4.  cos sin , 0,
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For the following problems find the volume of the solid generated by revolving the region bounded by the lines and 

curves about the y-axis.  You may use your calculator to graph the functions only. 

1.  The region enclosed by 25 , 0, 1, 1x y x y y        

 

 

 

 

 

2.  The region enclosed by 
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2 , 0, 2x y x y     

 

 

 

 

 

3.  The region enclosed by the triangle with vertices (1,0), (2,1), and (1,1) 

 

 

 

 

 

 

4.  The region bounded above by the curve y x  and below by the line y = x 

 

 

 

 

 



Washer Method 

1. Determine the volume of the solid obtained by rotating the portion of the region bounded by  

              𝑦 = √𝑥
3

 and 𝑦 =
𝑥

4
 that lies in the first quadrant about the y-axis. 

 

 

 

 

 

 

2. Find the volume of the solid formed by revolving the region bounded by the graphs of  

            3y x  , y = 1 and x = 4 if the region is revolved about the x-axis. 

 

 

 

 

 

 

 

3. The region in the first quadrant bounded by the graphs of y = -x2 + 9 and 
5

2
y x  is revolved about the 

x-axis to generate a solid.  Find the volume of the solid. 

 

 

 

 

 

 

 



4. Determine the volume of the solid obtained by rotating the region bounded by 𝑦 = 𝑥2 − 2𝑥 and  

             𝑦 = 𝑥, about the line 𝑦 = 4. 

        

      

 

 

 

 

 

 

5. Determine the volume of the solid obtained by rotating the region bounded by 𝑦 = 2√𝑥 − 1 and  

              𝑦 = 𝑥 − 1 about the line 𝑥 = −1. 

        

 

 

 


